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A method is proposed for the continuous correction of control in the linear problem of the optimal 

positional control of a dynamic system under conditions of indeterminancy [l-3], intended for use in the 

actual motion of microprocessors. On the assumption that the perturbations are sufficiently regular, when 

generating current control values, in addition to [4], analysis of the trajectory segment that has been 

traversed can be used. The results of computer simulations are given. 

THE PROBLEM of constructing optimal feedback, formulated at the start of the 195Os, has proved to 
be exceptionally difficult [5] and has still not been solved, apart from special cases [l, 2, 61 and in 
one specific case [7,8]. We proposed a different approach to the problem in 141, and this is extended 
below to the case where, in addition to the optimal regulator, the feedback includes a predictor 
which, from an analysis of traversed trajectory segments of the dynamical system, predicts the 
possible effect of a perturbation in a certain time interval in the future. On the basis of this 
information, the regulator generates the current values of the control action. 

The proposed method of controlling a dynamic system can be effective for certain types of 
perturbation. If the prediction procedure is dropped, it becomes the classical optimal feedback 
method of control. It should be noted that when stochastic models of sufficiently regular 
perturbations (in the probability sense) are used, prediction is the typical operation that feedback 
performs [9]. 

1. STATEMENT OF THE PROBLEM 

In the class of piece-wise continuous functions u(t), tE T= [0, t*], we consider the linear 
problem of the optimal control of a dynamic system 

J(U) = hAx(r’ ) + max (1.1) 

X’=AX+bu, x(0)=x$) (1.2) 

Hx(t’)=g (1.3) 

lu(t)lG 1, tET (xER”, gERm, uER) (1.4) 

As we know [ 1,3], optimal programmed control of problem (l.l)-(1.4) is the name given to each 
piecewise-continuous function u”( =) = (u’(t), f~ T), for which the constraint 1 u’(t) 1 d 1, TV T 
holds, which transforms the (optimal) trajectory n’(t), tE T of system (1.2) at time t* to the 
terminal set X* = {xE R”: Hx = g}, defined by (1.3), and gives a maximum value for quality 
criterion (1.1). 

Optimal programmed controls are used, as a rule, to evaluate the potential of a dynamic system, 
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but are rarely employed in practice, owing to the fact that they are incapable of allowing for the 
inevitable perturbations that arise during actual functioning of system (1. l)-( 1.4). 

It is for this reason that, in applications, preference is given to positional optimal control 
(feedback-type optimal controls). By this is meant any piecewise-continuous functions u”(x, t), 
xE R”, tE T which satisfy the inequality j u”(x, t) 1 SG 1, XE R”, tE T, and for any permissible 
position (7, x*(r)) generate a solution of the system 

x.=Ax+bzP(x, t), x(7)=x8(7) 

which coincides with the optima1 trajectory for this position. Unlike programmed control u’(1) E T, 
tE T, positional control u’(x, t) E T, xE R”, tf T is capable of reacting to many unpredicted 
perturbations w(t), tE T, that is, the trajectories x* (t), tE T of the system 

X” = Ax t bzP(.x, t) + w(t), t E T, x(0) = x0 (1.5) 

are completely satisfactory from the practical point of view. 
The algorithms of the operation of regulators described in [4] construct, in real time, controls u*(r), tE T that 

are identical with samples u’(x*(t), t), tE Tof optimal feedback control along the processX*(t), tE Tsatisfying 
Eq. (1.5) under the effect of a perturbation w(t), tE To = [O, to], O<t’<t*; w(t)=O, tE]t’, t*], for which 
allowance was not made in (l.l)-(1.4). Possession of this property is the basic principle underlying the 
regulators constructed in [4j. Regulators can be constructed using other principles also. The algorithm of 
operation of the regulator described in this paper uses the results of an analysis of a segment of a traversed 
trajectory to generate the control action. 

We assume that the regulator has been constructed and has been in operation for a 
timeTo = [0, r], O<r<t’. We denote by u*(t), tE T*(T) the control produced by the regulator, 
and by X* (f), tE To(~) the trajectory of the system that has been traversed 

X -* =Ax8 tlxl* tw(t), x*(o)=Xg‘ TE ?-o(7) (l-f-3 

The function 

zW(r) =x*(r) -z@(t), P(t)=F(t,O)x, + jk(t, s)&~*~~)~s 

0 

t E T, (ii’(t) = AF(t), F(O) = & F(t, T) = F(t)F-‘(T)) 

characterizes the drift of the trajectory (1 A) due to the effect of the perturbation w ((t), t E T. We 
assume that perturbations w(t), tE T are continuous and fairly regular and behave according to 
certain (unknown) relations, by virtue of which the functions z”(t), t E To can be approximated 
quite well in the given finite-parametric class of functions 

zf *, u) = (z(t, u), t E TO) 

UE I/= 1 vER”: d, G VG d*j, rz32n 

On this basis, at a time r>O we consider the segment 

22”(*)=(P(C), n(7)< tG T), OG g(7)< 7 

of a trajectory that has drifted, and approximate it by the function z(t, U(T) ), F(T) S tS T from the 
finite-parametric family mentioned above 

v(7) = max max 
i’l.2 ,..., n tE[rr(z),rl 

I Z?(t) - Zi(t, U(T)) I = 

= mm max max 
U i=1.2,...,0 tEtJ1(7),TJ 

I Z?(t) - Zi(t, U) I 

(1.7) 
uf V, zW(7)=2(7, v), i”{@(T))= z@(r), u) 

We select the interval [T, h(r)], USA s t” and assume that drift of the trajectory z”‘(t), 
TV [T, h(r)], in this interval is the same as the function zft, V(T)), tE [T, A(T)]. We take p(t) and h(t) 
to be certain continuous known functions of T: 0 d P(T) d FS h(r) S ta. 

The piecewise-continuous function u,(t) = u(t 1 r, X*(T), U(T)), tE I; = [T, t*] satisfying the 
constraint (4) will be called a r-permissible control if it corresponds to a trajectory x,(t) = x(t/ T, 
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x*(r), U(T)), tE T, of system (1.2) which, at time 7, emerges from the state x*(r), experiences drift 
Y(t) = z(t, u(r)) in the interval [r, h(r)], and at time t* reaches the set X*; the r-permissible 
control u:(t) = u’(~[T, X*(T), u(7)), tE T, is said to be T-optimal if it gives a maximum of the 
functional J(U) = hbx(t*): J(uy) = maxl(u,). 

We shall call the piecewise-continuous function u” (t, x, u), TV T, x E R n, u E V an optimal control 
of feedback type (optimal positional control) if the function 

X(f) = 
1 

x(t) + z(r. u) - F(t, r)z(r, u), r E 17, X(r)] 

x(t) + F(t, Xir))z(h(r), u) - F(t, r)z(r, u), tE]X(r), IfI 

(which represents the result of imposing a drift z”(t) = z(t, u) on the trajectory x(t), tE T, of the 
system 

X’ = Ax •t buO(t, x, u), x(7) = x* 

in the interval tE [T, A(T)]) for any T, x*, u from the range of controllability. 
If the optimizing system and mathematical model (1.2), which under actual conditions experi- 

ences the effect of unknown perturbations w(t), t E T, is closed by feedback ~‘(1, x, u), then its 
behaviour will be described by the equation 

X’ = Ax + buO(t, X(f), U(f)) + w, X(0) = x0 (1.8) 

where u(t) is the solution of (1.7) when T = tE To. 
We denote by w*(t), CE 10; w*(t) = 0, to< I < t* a perturbation that occurs in the given process. It 

will correspond to a trajectory x* (t), tE T, Eqs (1.8), the function u*(t), tE T of (1.7) and control 
u*(t) = u’(t, x*(t), u*(t)), TV T, which circulates in the closed system (1.7), (1.8). 

A unit which generates the control u*(t), tE Tin real time in each specific part of the functioning 
of the system is called an optimal regulator. 

This definition of a regulator does not assume that the optimal feedback control u’(t, x, u), t E T, 
xER”, uEVis known. 

The purpose of the present investigation is to describe an algorithm for the operation of the 
regulator (Sec. 4). First, in Sets 2 and 3, we describe algorithms for constructing in real time the 
T-optimal control uy( 0) and the function U(T), TE To. 

Note. 1. An operator of a different kind can be obtained if drift z”(t) of the trajectory in the interval 
tE [T, h(7)] is assumed to be a certain function from a v(t)-neighbourhood of the function z(t, V(T)), tE[r, 
A(T)]. In that case, the guaranteed result principle must naturally be used in the definition of r-permissible and 
r-optimal control. 

2. When constructing the approximation z(t, U(T)), IE [/A(T), r] of function z”(t), TV [P(T), T], a requirement 
that can be added to P’(T) = Z(T, II), z”‘@(T)) = Z(p(T), u) is that the two functions shall be identical at several 
points in [P(T) T]. 

2. THE DEFINING EQUATIONS OF THE REGULATOR 

From the definition of r-optimal control u:( *) = (u:(t), tE T,), it follows that it is a solution of 
the system 

hbxjt*)+max, x.=Ax+bu, x(7)=0 

ffX(t’)=g(T); IU(f)I< 1, tET, 

(2.1) 

where 

g(T)=g-~[~(~*,~)(~*(~)--(~,U(~)))+~(t*,~(~))z(~(T),U(~))] (2.2) 

We will describe the real time construction algorithm for the solution u:( 0) of problem (2.1) for 
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rE To = [O,r’] on the assumption that g(r) is a certain known m-vector function which, together 
with the given time to, possesses the following property 

rank(HF(t’, t)b, rET,(?))=m, VTE To 

where T,(r) are points of discontinuity of the function uz (I) = u” (t 17, g(r) ), t E 17, t *]. The solution 
uz( .) of (2.1) has the form [lo] 

u;(t) = sign Gus, I E T, (2.3) 

where &(t), tE T,, is a solution of the conjugate system II; = -A’$, $(t*) = ho-H’y(7) and 
y(r) = (yi(7), i = 1, 2, . . . , m) is the optimal potential vector. 

From (2.3) it follows that the solution of (2.1) is defined by the set 

G(r), i= 192, f *. ,p(7); Y(7) 

consisting of points fi(r), i = I, 2, . . . , P(T) at which the function A,(t) = Ffi:(t)b, tE T,, becomes 
zero, together with the optimal potential vector. (We assume that ti(r)< ti+1(~), i = 1, 2, . . . , 

P(9--1.) 
We construct functions k,(T), i = 1, 2, . . . , p (7) 

&i(r) = -1, if A,(t) < 0, t E Iti( Ti+ 1 (T)[ 

ki(r)= 1, if A,(t) > 0, t E Iti( ti+r(r) [ 

i=O,l,... 9 P(7) , (to(7) = 7, Cp(7)+ l(7) = t 3 

Suppose that at r = r. the solution of (2.1) satisfies the relations 

7-C rl(r), f,(r) < f*; ~A,(&‘~+,,~,,, f0 

i= 1,2,. . . ,p(7) 
(2.4) 

It is obvious that the functions P(T), ki(T), i = 0, 1, . . . , p (T), T E T” are piecewise-constant 
(discrete). Allowing for this and the fact that relations (2.4) hold at r = rot we have 

P(r) =P(ro) =P, &(r)= ki(70) =kj 

i=O, 1,. . . ,p; TET+(T~) (2.5) 

Here T+(T~) is a sufficiently small right-hand neighbourhood of the point ro. 
Then, from (2.3) and (2.4), we conclude that the continuous functions 

ti(r). i= 1~2,. t e tp; y(7) (2-6) 

which define a solution of (2.1) are uniquely defined by the system of equations 

f(r; ti(r), i= 1,2,. . . ,p; g(i))=0 

qi(ti(?), i = 1) 2 , . */. , p; Y(?))“O, j=1,2 ,..., p 

where 

‘i+1 
f (7; ti, i=1,2,... VP; g)=i$Oki t,l HF(t*, t)bdt -g 

qt(ri, j= 1,2,. . . , P; y) =fh; -y’H)F(t*, +)b, j=1,2,...,p 

co =T, tP+l = r.’ 

(2.7) 

The equations of (2.7) are called the defining equations of the regulator. 
A numerical method of constructing solution (2.6) of Eqs (2.7) for regions where the functions 

(2.5) are constant, the rules for finding the points of discontinuity rE 7’” of the functions (2.5) and 
the rules for joining the solutions (2.6) of Eqs (2.7) at time 7 were given before in 141. 
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It is clear from (2.7) that the behaviour of the set (2.6) depends on the function g(~) which, in 
turn, is constructed using (2.2) and depends on the solution of (1.7). 

Before going on to describe the algorithm of the operation of the regulator, we will describe the 
algorithm of operation of a unit which generates the solution u(r) of problem (1.7) in real time. We 
will call this unit a predictor. 

3. ALGORITHM OF THE OPERATION OF A PREDICTOR 

Suppose that 

~(t, IJ) = Zk tJiUj(t), t E T 
j-1 

where @j(t) = (q(t), i = 1,2, . . . , n),i = 1,2, . . . , r, tE Tare known functions. Then (1.7) can be 
written in the form 

u+min (3.1) 

--V d Ziw (t) - ,i, UjWij(t) G P 
= 

i= 1,2,. . . ,n; tEU7)= b(7),71 

Zw(T)= ~ UjOj(7): 
j=l 

zw(r(7))=j~,ujwi(P(7)), lJE v 

Let (V(T), U(r)), V(r) = (“j(T), i = 1, 2, . . . , r) be the optimal plan of problem (3.1). We put 

J= 11,2 ,..., t-1, I= 11,2 ,..., nl 

Q(T)= I (i, t)EIX T(7): I Zr(t) -j~Uj(7)Wlj(t)I=Y(7)) = 

= I (ik(7), tk(7)), k EK(7)1 

4k(7)=Sign(z;Yk(fk)-j:J Ujt7)0ikj(tk)), kEK(7) 

J:= (i~J: Uj(7)=d;l, Jo= Ii~~: Uj(7)=d,jf 

(3.2) 

Here K(r) is a finite subset of the set of natural numbers. 
By analogy with the known result [ll], it can be shown that there exist n-vectors T*(T), T*(T) and 

numbers yk(7), kEK(7) 

such that for U(T) and estimates 

A/(7)= kEcc7) aikj(tk(7))Yk(7) +‘?* ‘(~J~j(7) +‘?:(T)wj(P(7)), iEJ 

the relations 

Aj(r)>O for iEJF; Ai 0 for jEJ; 

A,(T)=& iEJ\(J;UJ,-) 

are satisfied. 
We will call the vector t(T) = (q*(T), T&+.(T); Yk(T), kEK(T)) an optimal dual plan. The set {V(T), 

U(T), ((T)} of direct optimal dual plans will be called a solution of problem (3.1). 
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The solution of (3.1) is non-degenerate if 

(3.3) 

(3.4) 

Here 

J:= fjEJ: A,(r)=O{; C,(K,,J,)= 
qkjffk(7)), i EJ, ; 0 

kEK, I/ 

Let {4~~), 4~0); 5t~0)) b e a non-degenerate solution of (3.1) for r = r. . We will describe an 
algorithm of the operation of a predictor which, in real time, constructs a solution {V(T), U(T); t(7)} 
of problem (3.1) for 7~ 1~~) to] on the assumption that the function U(T) is continuous in the interval 

[To, tOI. 
Let T+(T~) denote a sufficiently small right-hand neighbourhood of the point ro. 
Consider the set of functions 

U(r)* UC?); Yk(?)* kEKtT1; rl*(?>, V1,(7) 

ik (7% tk(T), qk CT), k E K(7) ; J:, J; 
(3.5) 

which define a solution of (3.1) for 72 ro. From these, we select piecewise-constant (discrete) 
functions 

J;,J;,KW; h(r), &(7), kEK(r) (3.6) 

and continuous functions 

v(r), U(r); Yk(r), tk(rh keK($; ‘I*($, V.(T) (3.7) 

Since the solution of (3.1) at 7 = 7. is non-degenerate, for discrete functions (3.6) we have 

J; = J;, =J+, J; =J;, =J -, K(T) =K(T,,) =K 

ik(T)=ik(%)=ik, qk(r)=qk(TO)=‘&, kEK, T=+(TO) 

(3-S) 

From (3.2) and (3.8) it follows that a unique set of continuous functions (3.7) consisting of the 
solution of (3.1) and active times can be found for 6 T’(Q) from the equations 

ur(T)=dj*, iEJ+; U&T)=+, jEJ- (3.9) 

fr&(Utr), y(r), fk($)=% &k@(7), tk(?))=o, kEK 

q%‘(7), r)=& 4.(u(7),7)=0, A,(yk(?), kEK)=O 

Aj(tk(+ Y&T)> kEK; ?‘*(9, V,(T). 7) =O, iEJ” 

Here 

fZ&?)= i U+J;~#) -Z;kw(f), kEK 
j-1 

A,ty,,k=O= 2 qky,+l; q*(u,?)= ’ uj”j(p)--zw@~ 
kEK j-1 
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Hence, for rare the functions (3.7) [the solution of (3.1)] can be constructed as follows. 
The interval [TV, to] is divided into segments in which the discrete functions (3.6) are constant. On 

each segment, the continuous functions (3.7) are found from Eqs (3.9), by the numerical method 
given in Sec. 5. The time 7of discontinuity of functions (3.6) is characterized by one of the following 
properties: 

1. for some (io, to)EZX T($\{(ik, rk(?), kEK} 

whenqo=lorqo=-1; 
2. for a certain joe.Zo either ujOG) = d*j, or vi,(?) = dz; 
3. for a certain so E K, ys,(+ = 0; 
4. for a certain joENo, Ai, = 0. 
We continue by investigating the general case, thereby excluding cases where (a) two or more of 

the above properties 1-4 are satisfied simultaneously, (b) any of properties l-4 hold for several j E J 
or several j and times (i, t) E Z x T(7), and (c) for a certain (i, t) E Z x T(T) 

Rules can be obtained [4, 111 for finding new values of the functions (3.6) 

7: J-, Z?; 6, @k, kEif 

in a new interval [F, T*] where they are constant, and a rule for joining the solutions of equations of 
the type (3.9) at times 7, 7, , etc. 

There are severa possible ways of starting the predictor at time r = 0. For example, we could 
proceed as follows. 

Before the start of operation of the predictor, in a small initial segment [0, h,], h, >O, we define a 
finite set of possible drifts Y“(t), tf ]O, h,], k = 1, 2, . . . , N. For each drift Yk(t), tE [0, h,], we 
find the solution (8, &) of problem (1.7) for T = h,, g(hIz*) = 0. Then after switching on the 
predictor, we measure the true value of the drift that has occurred in [O, h,]. We find the drift 
zwko(f), IE [0, h,. closest to it. We reduce the corresponding vector (vku, ukO) to the solution (v(h,), 
v(h,)) of problem (1.7) at 7 = h, by a procedure of the type described in [ll]. 

4. AN ALGORITHM OF THE OPERATION OF THE REGULATOR 

We choose the parameter E>O which characterizes the limiting switching frequently generated by 
the control regulator. We fix the functions p(f) and h(r) (assuming that the functions @j(t), TV To, 
j = 1,2, . . . , r are known). At the initial time 7 = 0, the regulator selects the value 

1(* (0) = r&e (0) 

that is, it starts operation with optimal programmed control. For any current time r, the regulator 
selects the control value by the rule 
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d(7)= 
u:(7), 7 - f(7)& E 

u* (7 -O), 7--f(7)< E 

where t(T) is the nearest point of discontinuity to 7 of control u*(t), tE[O, 4, t(0) = -“; u:(t), 

tE T, is the solution of (2.1) obtained when solving the defining equations (2.7) using the function 

g(~) (2.2) in which the vector U(T) is found from the defining equations of the predictor (3.9). 
After operating as described, the regulator constructs relay control u* (t), tE T; 1 u* (t) I= 1, tE T, 

the switching points of which on the set To are not less than a distance E apart. 

5. A NUMERICAL METHOD OF CONSTRUCTING THE SOLUTION OF EQS (3.9) 

We construct matrices 
B D, 0 

G(v;tk,yk,k~K;~)= C D, 0 

Ii I , D,= 11 Do II 

0 c?’ B' 
0 

Wjkit'k). j E Jo, qk 

kEK 

Y 

~;~~(rk), jeJ”; 0 

B= ----______ , c= 
wj@), ~EJ’; 0 keK 

Y 
wj(Mh jE Jo; 0 

c =Cdiag(J’k, keK) 

D, =d&!(ak, keK)> D, =diag(Pk, kEK) 
r 

flk = .x v.w$j(tk) - 2:’ w 
I=1 1 

,k Vd, k E K 

It can be shown that if condition (3.3), (3.4) holds, 

det G(v(~,,); fk(To), yk(ro), kEK; t,)+O 

Thus, for TE T+(Q) there exists a unique solution (3.7) of system (3.9). 
We will describe a numerical method of constructing this solution. Suppose that the solution (3.7) is known 

at nodes of the grid T = Q+S/Z, s = 0, 1, . . , p - 1, where h>O is the pitch of the grid (a parameter of the 

method). To compute elements (3.7) at node T(*, = ~~+ph we put 

vJ=d.j. ~EJ‘; vj=di*, jEJ’. 1=1.2 ,..., I, 

and construct the vectors 

z’=(v~, jEJ”; v’; r:, kEK; y:, kEK; 17.1 o’.) 

I = 1.2,. . . , I, : 

2’ = (v! = v (7 
I 

i (.)-h), I’EJ’; v1 =V(T (*)--h); t;=tk($) -h). keK 

v; =)‘k(z(,, -hh kEK; tl*’ = W(*) -h), o: = rl,(r(,) -h)) 
zl+l =z’- C’(v’; r:, r;, kEK. ~(.$(f’~~(v’, v’s r:,. keK; q*‘@t ~(&q:(v’. paI) 

I I 1 I 
f;k(U 8 fk)v kEK; Ai(tp _!‘kp kEK; VI*‘, q’,,, jsJo 

A,(.$ kEK))’ 

Here lo = I,(h) is a natural number (a parameter of the method). 
We put 

v(T(*)) = “lo, v(7(*)) = v” ; ‘k(T(*)) = r; 

Yk($)) =Y;, k EK; V(T(.)) = n 
*‘Ll , MT(*)) = rl:o 

The method can be modified in various ways, but this is beyond the scope of the present paper. 
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6. EXAMPLE 

We will illustrate the results given above on the problem of optional control of oscillatory motion 

437 

[ u(r)dr + min, x” +x = u, x(0) = 0,703 

x’(O) =-0,955; x(4rr)=x’(4n)=O; o< u(t)< 1, tE[0;4n] 

In this problem, optimal programmed control is of the relay type. It takes only two values: 0 and 1, the 
switching times t1 = 0.334; t2 = 0.936; t3 = 6.62; t4 = 7.22, with u’(t) = 0 in [O; tl]. The quality criterion on 
optimal programmed control is equal to J(u”) = 1.2038. 

Suppose that, as the given system functions, a perturbation w* (t) = 0.1 sin5t, t E [O; 51; w* (t) = 0, tE 15; 4771 
operates which was not take into account in the model and is not known to the regulator. 

The optimal relay regulator [4] generates the control u*(t), tE T with switching points tl = 0.34; tz = 0.99; 
t3 = 6.57; t4 = 7.14, with u*(t) = 0, tE[O; tl[. On control u*(t), tE T, the quality criterion takes the value 
J(u*) = 1.1813. 

If the regulator knew the perturbation beforehand, the corresponding optimal programmed control would 
have switching points tl = 0.333; t2 = 0.923; t3 = 6.62; t4 = 7.21 and J = 1.1794. 

At each current time 7, suppose that the regulator knows the value of perturbation w*(t) in the interval [T, 
A(T)] (h(7) = t+0.3, IE [0;4.7], A(t) = 5, tEl4.7; 51. Then the regulator will construct the control u*(t), tE T 
with switching points tl = 0.36; t2 = 0.975; t3 = 6.586; t4 = 7.151, with J(u*) = 1.1806. 

We switch the predictor into feedback mode. To demonstrate the part played by the predictor in improving 
the efficiency of control, we shall confine ourselves to a special non-optimal modification. We shall assume that 
the predictor approximates each drift component by a second-order polynomial 

z,(t, u) = vp + “,(‘4 + “f’, i = 1, 2 

and from these chooses two which are equal to the components of drift that took place at points T, ~(7) and 
have equal derivatives to those components at the point T. We choose the function p(t), tE [O; 51 in the form 
p(t) = 0, tE[O; 0.31; p(t) = t-0.3, tEl0.3; 51. The required functions VP)(T), TE[O, to], j = 0, 1, 2; i = 1, 2, 
have the form 

“l(Q) = [Z’ w j (r) - $?z) - Z,!+&)))/(, - r(r))l/(r -p(r)) 

vjQ= @W(r) - ~pwW(7 -P(Q) -p(T) (r -/J(r)) 

"p(r)= zy(p(r)) - ",('?(Z)~u1(7)_"~)(7)c1(7) 

r 

zW(t) = czy, i=1,2)=x*(r)-F(t,O)x,-IF(t,s)bu*(~)ds, reT 
0 

The control u*(t), tE T, selected by the regulator using the results of the operation of the predictor, has 
switching points tl = 0.4; t2 = 0.955; t3 = 6.554; t4 = 7.180, with u*(t) = 0, tE [O; t1 [. The quality criterion on it 
takes the value J(u*) = 1.1808. 

The above calculations show that the result obtained by an optimal regulator [4] is improved by 19 x lop4 if 
there is complete knowledge of a future perturbation. Accurate knowledge of a future perturbation in a 
preceding segment of length 0.3 yields a gain of 8 X 10m4 units (42% of the maximum possible). The 
(non-optimal) use of a predictor with respect to a perturbation in an interval of length 0.3 gave a gain of 
6 X 10m5, i.e. 75% of the previous result. 

The authors are indebted to N. V. Balashevich for performing the calculations. 
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